

OUGHTON PRIMARY & NURSERY SCHOOL

Written Calculation Policy

Policy Approval Date: September 2023 (originated 2014)

Approved by the Full Governing Body see minutes September 2023

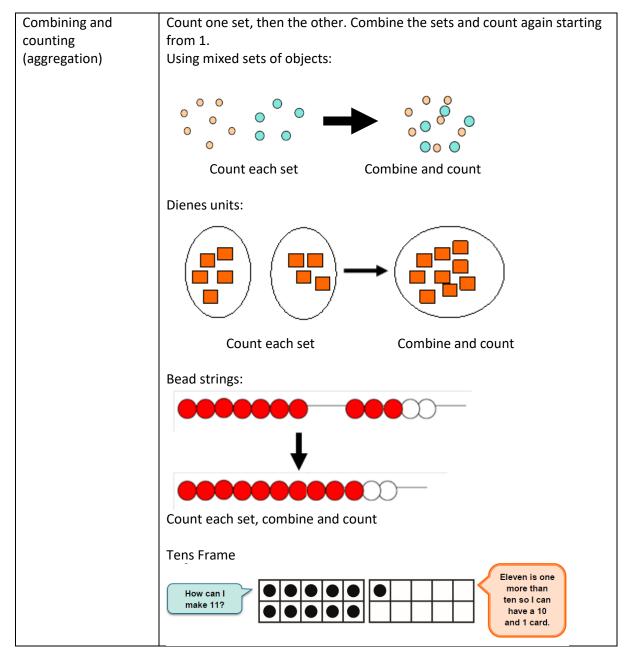
Review Date: September 2024

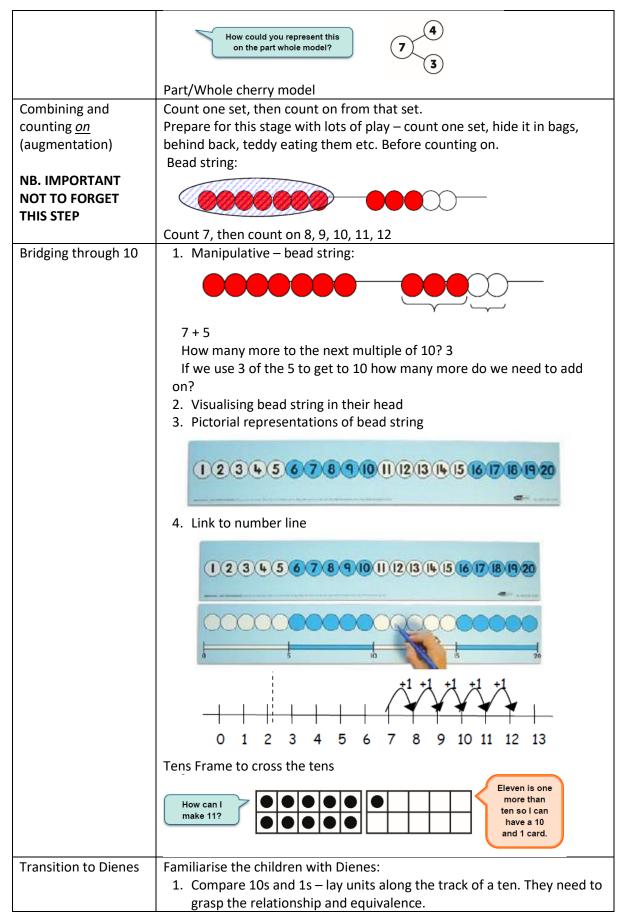
This policy was written with guidance from HfL Maths Advisors with the Maths Co-ordinator in April 2014. This policy is reviewed each year by the Maths Subject Leader.

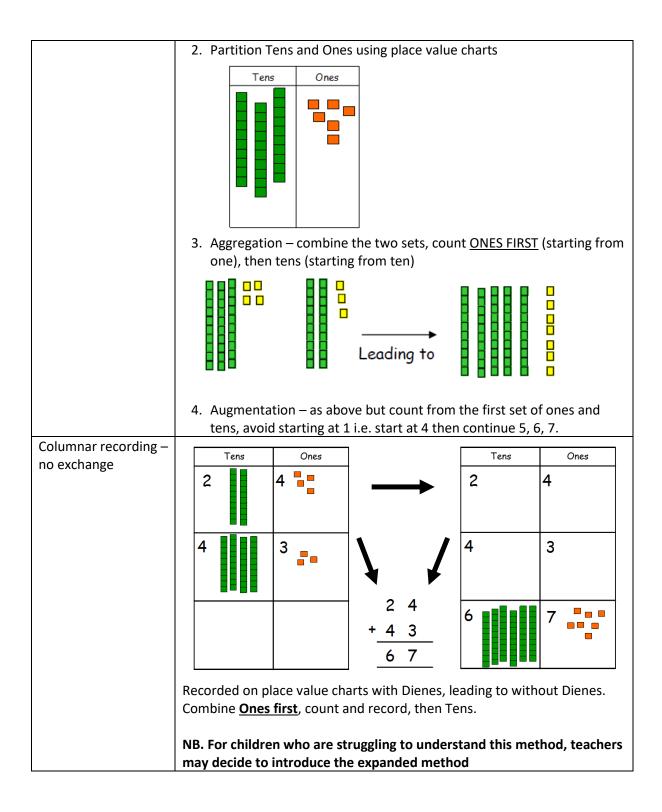
This policy outlines the progression through <u>written strategies</u> for addition, subtraction, multiplication and division. The aim is for children to become fluent in these written strategies through varied and frequent practice so that pupils develop conceptual understanding and the ability to recall and apply knowledge in a range of contexts. In addition to **fluency** of calculation teachers also need to consider frequent opportunities for children to **reason** using mathematical language as well as **solve problems** by applying their mathematics.

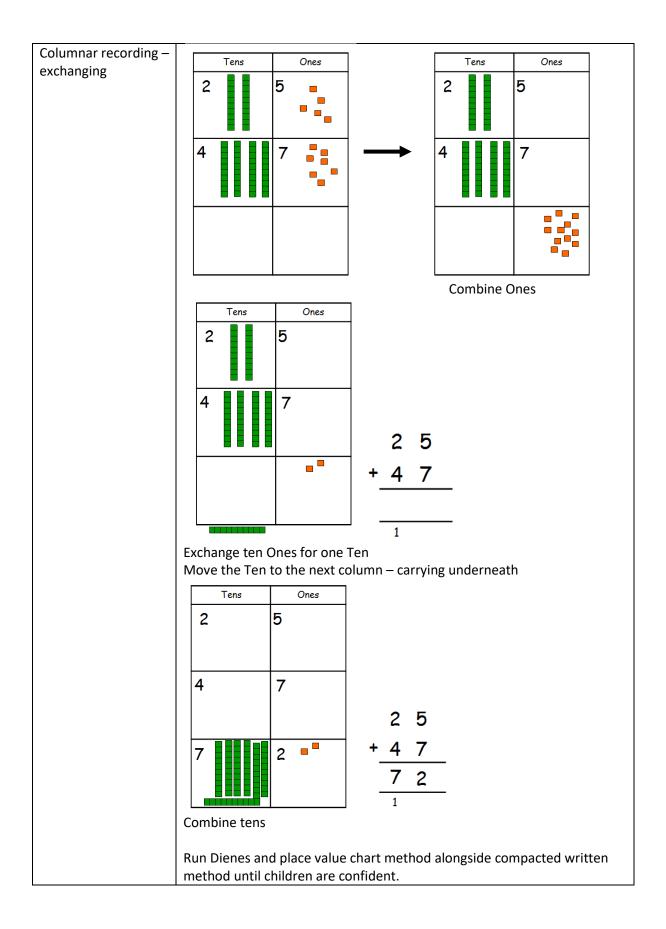
Children will move through the stages of written calculation at the pace appropriate to them however we expect the majority of each class to be working at age-appropriate levels as set out in the National Curriculum 2014. The policy includes examples and diagrams showing how to teach calculations as consistency in layout and presentation is important. The policy also includes the equipment and resources that will be used to support children's understanding of each strategy.

This policy focuses on <u>written calculation</u> in maths. It is also important to teach <u>mental strategies</u> alongside, which is done in accordance with the Herts for learning document Progression in Mental Mathematics and the Herts Essentials maths planning and fluency documents.

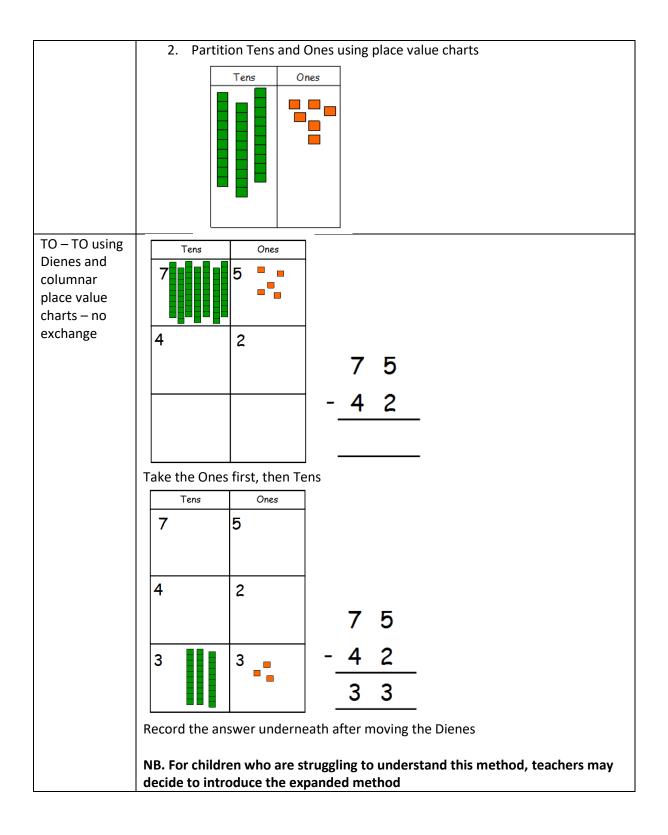

Counting:	
 One to one correspondence 	 Children synchronise their counting and pointing, keeping track of their counting as they go, assigning one number name to one object and only counting each object once. Counting static pictures is harder and children need to devise a system to know which they have counted as they go along.
 Stable order of counting 	2. To be able to count means knowing that the list of words used must be in a repeatable order. This principle calls for the use of a stable list that is at least as long as the number of items to be counted; if children only know the number names up to 'six', then they obviously are not able to count seven items.
3. Cardinal aspect	3. This is the idea that when they are counting a set of objects, the last
of number	number counted is the number of objects altogether.

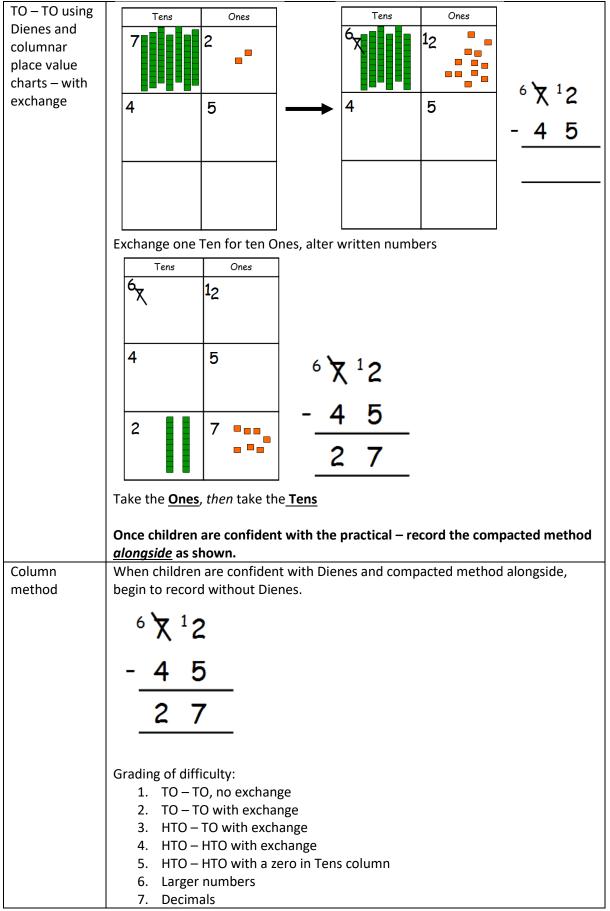

Counting and partitioning


4. Abstract principle of	4. This is where children are counting things that cannot be touched or moved, such as sounds, imaginary objects or even the counting
number Greater than/less than/equivalent	words. Using direct comparison with manipulatives – which is more? Bead strings:
	Numicon:
	Balance scales:
Partitioning	1. Complements to 1, 10, 100 Bead string: Numicon:
	 2. Partitioning any number in all possibilities e.g. partitioning 9: 0+9 1+8 2+7 3+6 4+5

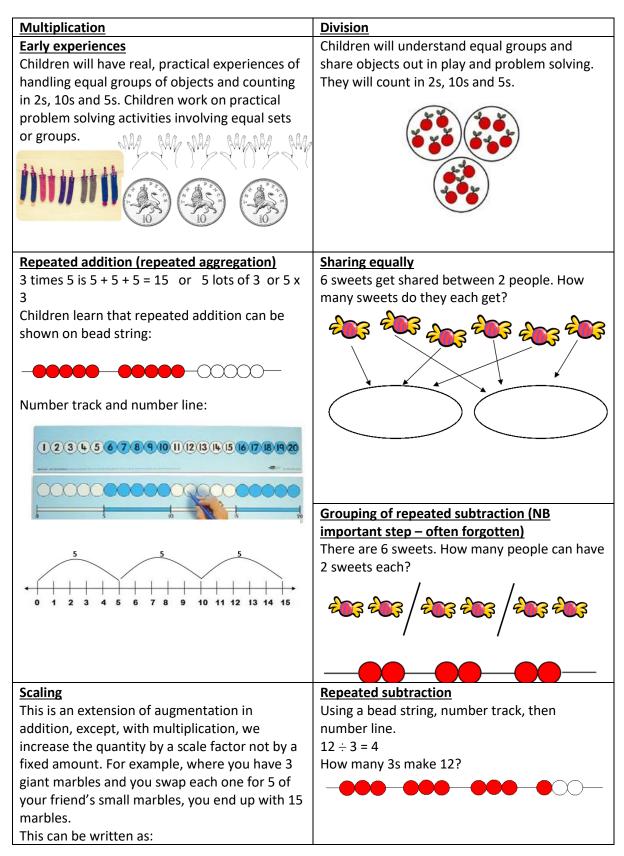

This is 3. It is 3 more than 0.		It is 2 fewer than 5. There are 7 more until 10.
3. Tens frame, partitioning	to ten and number k	oonds to ten.

Addition

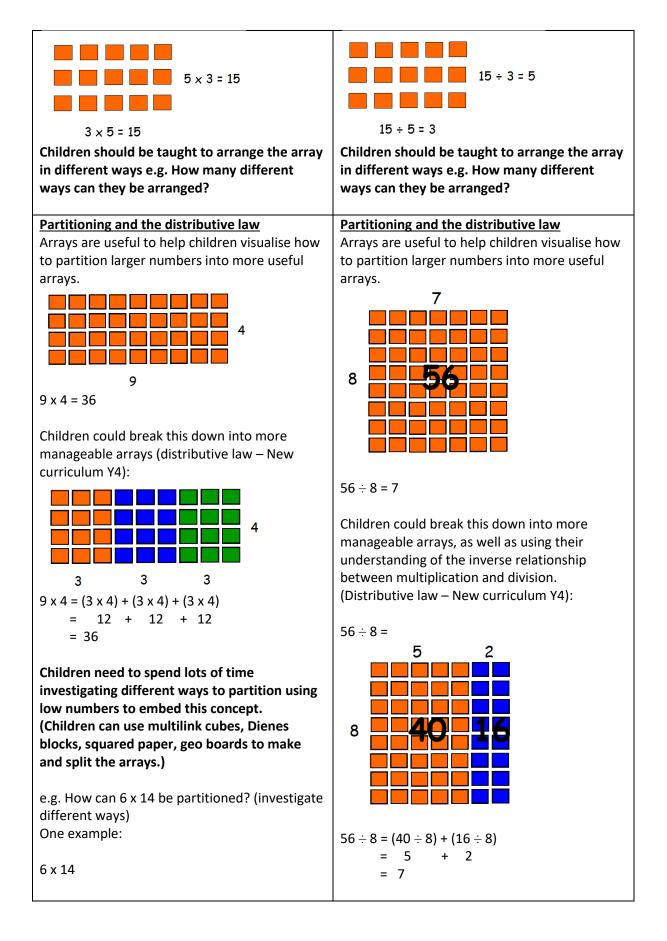


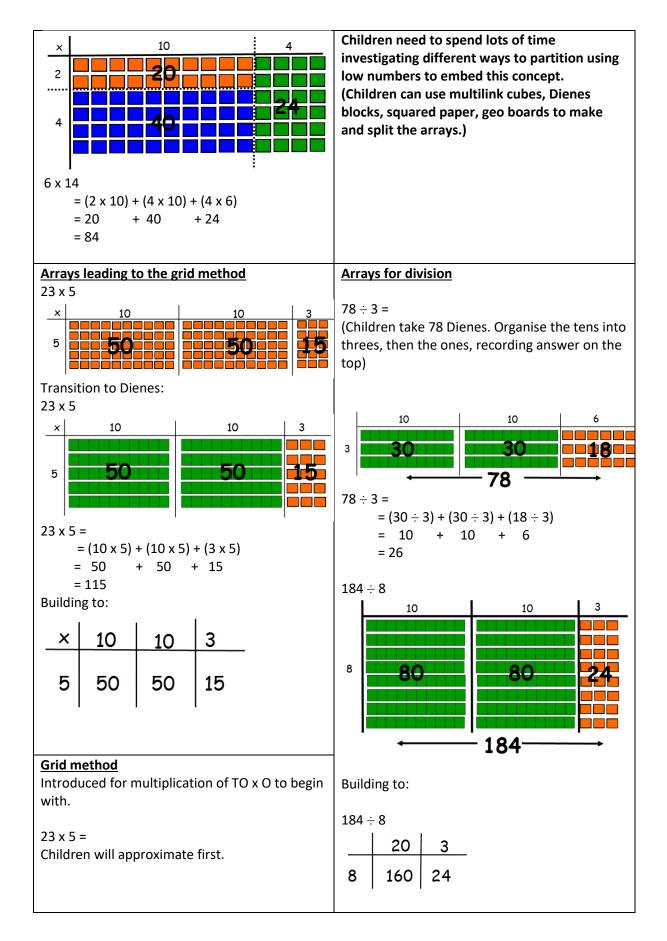


Compacted written method	 2 5 + 4 7 7 2 1 When children are confident without Dienes. Grading of difficulty: No exchange Extra digit in the answer Exchanging Ones to Tens Exchanging Tens to Hundreds Exchanging Ones to Tens AND Tens to Hundreds
	 6. More than two numbers in calculation 7. Different numbers of digits 8. Decimals – see next stage
Decimals	It is important to take children back through the stages with decimals: 1. Aggregation: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 Count both sets starting from zero 2. Augmentation:
	Start from 0.7, count on 0.8, 0.9
	3. Bridging through 10: 0.7 + 0.5 = 0.7 + 0.3 + 0.2 = 1.2
	 4. Columnar method with Dienes as decimals 0.1 1.0 10.0
	5. Written columnar method as above.


Subtraction

3 models of subtraction to be used	1. <u>Take away/count back</u>
throughout	12 - 5 12 objects, count back 5
	2. <u>Comparing two sets/difference</u>
	12 – 5 Comparing 12 and 5, count difference
	3. <u>Partitioning</u>
	12 - 5 Seeing that 12 is made up of 7 and 5
Subtracting single digits	 Use manipulatives in the above 3 ways (Bead strings, numicon) Visualise bead string in their heads Pictorial representation of bead string
	1234567891011121314151617181920
	Link to number line
	1234567891011121314151617181920
Transition to Dienes	Familiarise the children with Dienes: 1. Compare 10s and 1s – lay units along the track of a ten. They need to
	grasp the relationship and equivalence.





Multiplication and Division

$1+1+1=3 \rightarrow \text{Scaled up} \rightarrow 5+5+5=15$ For example, find a ribbon that is 4 times as long as the blue ribbon. 5cm ribbon 20cm ribbon	123 + 567 + 910 + 123 + 567 + 920 $4 + 567 + 910 + 123 + 567 + 910 + 123 + 567 + 910 + 920$ $4 + 567 + 910 + 91$
Commutativity Children learn that 3 x 5 has the same total as 5 x 3. This can be shown on bead strings and number lines. 3 x 5 = 15 5 x 3 = 15 5	Grouping involving remainders Children move onto calculations involving remainders. If there are 13 sweets shared between 4 children, how many would each child get? $13 \div 4 = 3 r 1$ 4 = 3 r 1 4 = 3 r 1
Arrays Children learn to model a multiplication calculation using an array. This model supports their understanding of commutativity and the development of the grid in a written method.	E.g. I have 62p. How many 8p sweets can I buy? E.g. Apples are packed in boxes of 8. There are 86 apples. How many boxes are needed? <u>Arrays</u> Children learn to model a division calculation using an array. This model supports their understanding of the development of partitioning and the 'bus stop method' in a written method.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Children are encouraged to record informal jottings alongside their work to help work out how to partition the 184 e.g. 1 x 8 = 8 2 x 8 = 16 3 x 8 = 24
Moving to <u>HTO x O</u>	20 x 8 = 160
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c} \underline{0.t \times 0} \\ 4.9 \times 3 \\ \hline \hline X & 4 & 0.9 \\ \hline 3 & 12 & 2.7 \\ \hline \hline 14.7 \\ \hline \end{array}$	
Children extend their use of the grid method to include: ThHTO x O e.g. 4348 x 8 HTO x TO e.g. 372 x 24 O.th X O e.g. 4.92 x 3	
Short multiplication (To run alongside grid method) Children will refer back to the grid method and make the links between the methods. Links can also be made with place value boards and Dienes used in columnar addition.	Long division 'The bus stop method' Building on arrays model above. 78 ÷ 3 20 6
24 x 6	3 60 18

Oughton Primary and Nursery School Calculation Policy

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
 Grading of difficulty (short multiplication) TO x O no exchange TO x O extra digit in the answer TO x O with exchange of ones into tens HTO x O no exchange HTO x O with exchange of ones into tens HTO x O with exchange of ones into tens HTO x O with exchange of tens into tens HTO x O with exchange of tens into hundreds HTO x O with exchange of ones into tens and tens into hundreds As above with greater digits x O O.t x O no exchange O.t with exchange of tenths to ones As above with greater numbers of digits and decimals places. 	 Grading of difficulty (short division) 1. TO ÷ O no exchange no remainder 2. TO ÷ O no exchange with remainder 3. TO ÷ O with exchange no remainder 4. TO ÷ O with exchange, with remainder 5. Zeros in the quotient e.g. 816 ÷ 4 = 204 6. As 1 – 5 HTO ÷ O 7. As 1 – 5 greater number of digits ÷ O 8. As 1 – 5 with a decimal dividend e.g. 7.5 ÷ 5 or 0.12 ÷ 3 Grading of difficulty for expressing remainders 1. Whole number remainder 2. Remainder expressed as a fraction of the divisor 3. Remainder expressed as a simplified fraction 	
Long multiplication Children will refer back to the grid method and compare before recording as:	4. Remainder expressed as a decimal Long division 432 \div 15 becomes 2 8 r 12 1 5 4 3 2 3 0 0 1 3 2 1 2 0 1 2	

1074	
x 22	
8	
140	
000	
2000	1074
8 0	<u>x 22</u>
1400	2148
0000	21480
20000	23628
23628	1
depending on whether tens/hundreds. Childre	lone in a different order, r you start with ones or en are encouraged to methods have the same
24 imes 16 becomes	124×26 becomes
² 2 4	1 2 1 2 4
× 1 6	× 26
2 4 0	2 4 8 0
144	7 4 4
3 8 4	3 2 2 4
	1 1
Answer: 384	Answer: 3224